Skip to main content

endpoints

Creates, updates, deletes, gets or lists an endpoints resource.

Overview

Nameendpoints
TypeResource
Idgoogle.aiplatform.endpoints

Fields

The following fields are returned by SELECT queries:

Successful response

NameDatatypeDescription
namestringOutput only. The resource name of the Endpoint.
clientConnectionConfigobjectConfigurations that are applied to the endpoint for online prediction. (id: GoogleCloudAiplatformV1ClientConnectionConfig)
createTimestring (google-datetime)Output only. Timestamp when this Endpoint was created.
dedicatedEndpointDnsstringOutput only. DNS of the dedicated endpoint. Will only be populated if dedicated_endpoint_enabled is true. Depending on the features enabled, uid might be a random number or a string. For example, if fast_tryout is enabled, uid will be fasttryout. Format: https://{endpoint_id}.{region}-{uid}.prediction.vertexai.goog.
dedicatedEndpointEnabledbooleanIf true, the endpoint will be exposed through a dedicated DNS [Endpoint.dedicated_endpoint_dns]. Your request to the dedicated DNS will be isolated from other users' traffic and will have better performance and reliability. Note: Once you enabled dedicated endpoint, you won't be able to send request to the shared DNS {region}-aiplatform.googleapis.com. The limitation will be removed soon.
deployedModelsarrayOutput only. The models deployed in this Endpoint. To add or remove DeployedModels use EndpointService.DeployModel and EndpointService.UndeployModel respectively.
descriptionstringThe description of the Endpoint.
displayNamestringRequired. The display name of the Endpoint. The name can be up to 128 characters long and can consist of any UTF-8 characters.
enablePrivateServiceConnectbooleanDeprecated: If true, expose the Endpoint via private service connect. Only one of the fields, network or enable_private_service_connect, can be set.
encryptionSpecobjectCustomer-managed encryption key spec for an Endpoint. If set, this Endpoint and all sub-resources of this Endpoint will be secured by this key. (id: GoogleCloudAiplatformV1EncryptionSpec)
etagstringUsed to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
gdcConfigobjectConfigures the Google Distributed Cloud (GDC) environment for online prediction. Only set this field when the Endpoint is to be deployed in a GDC environment. (id: GoogleCloudAiplatformV1GdcConfig)
genAiAdvancedFeaturesConfigobjectOptional. Configuration for GenAiAdvancedFeatures. If the endpoint is serving GenAI models, advanced features like native RAG integration can be configured. Currently, only Model Garden models are supported. (id: GoogleCloudAiplatformV1GenAiAdvancedFeaturesConfig)
labelsobjectThe labels with user-defined metadata to organize your Endpoints. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
modelDeploymentMonitoringJobstringOutput only. Resource name of the Model Monitoring job associated with this Endpoint if monitoring is enabled by JobService.CreateModelDeploymentMonitoringJob. Format: projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job}
networkstringOptional. The full name of the Google Compute Engine network to which the Endpoint should be peered. Private services access must already be configured for the network. If left unspecified, the Endpoint is not peered with any network. Only one of the fields, network or enable_private_service_connect, can be set. Format: projects/{project}/global/networks/{network}. Where {project} is a project number, as in 12345, and {network} is network name.
predictRequestResponseLoggingConfigobjectConfigures the request-response logging for online prediction. (id: GoogleCloudAiplatformV1PredictRequestResponseLoggingConfig)
privateServiceConnectConfigobjectOptional. Configuration for private service connect. network and private_service_connect_config are mutually exclusive. (id: GoogleCloudAiplatformV1PrivateServiceConnectConfig)
satisfiesPzibooleanOutput only. Reserved for future use.
satisfiesPzsbooleanOutput only. Reserved for future use.
trafficSplitobjectA map from a DeployedModel's ID to the percentage of this Endpoint's traffic that should be forwarded to that DeployedModel. If a DeployedModel's ID is not listed in this map, then it receives no traffic. The traffic percentage values must add up to 100, or map must be empty if the Endpoint is to not accept any traffic at a moment.
updateTimestring (google-datetime)Output only. Timestamp when this Endpoint was last updated.

Methods

The following methods are available for this resource:

NameAccessible byRequired ParamsOptional ParamsDescription
getselectprojectsId, locationsId, endpointsIdGets an Endpoint.
listselectprojectsId, locationsIdfilter, pageSize, pageToken, readMask, orderBy, gdcZoneLists Endpoints in a Location.
createinsertprojectsId, locationsIdendpointIdCreates an Endpoint.
patchupdateprojectsId, locationsId, endpointsIdupdateMaskUpdates an Endpoint.
updateupdateprojectsId, locationsId, endpointsIdUpdates an Endpoint with a long running operation.
deletedeleteprojectsId, locationsId, endpointsIdDeletes an Endpoint.
deploy_modelexecprojectsId, locationsId, endpointsIdDeploys a Model into this Endpoint, creating a DeployedModel within it.
undeploy_modelexecprojectsId, locationsId, endpointsIdUndeploys a Model from an Endpoint, removing a DeployedModel from it, and freeing all resources it's using.
mutate_deployed_modelexecprojectsId, locationsId, endpointsIdUpdates an existing deployed model. Updatable fields include min_replica_count, max_replica_count, required_replica_count, autoscaling_metric_specs, disable_container_logging (v1 only), and enable_container_logging (v1beta1 only).
predictexecendpointsIdPerform an online prediction.
raw_predictexecprojectsId, locationsId, endpointsIdPerform an online prediction with an arbitrary HTTP payload. The response includes the following HTTP headers: * X-Vertex-AI-Endpoint-Id: ID of the Endpoint that served this prediction. * X-Vertex-AI-Deployed-Model-Id: ID of the Endpoint's DeployedModel that served this prediction.
stream_raw_predictexecprojectsId, locationsId, endpointsIdPerform a streaming online prediction with an arbitrary HTTP payload.
direct_predictexecprojectsId, locationsId, endpointsIdPerform an unary online prediction request to a gRPC model server for Vertex first-party products and frameworks.
direct_raw_predictexecprojectsId, locationsId, endpointsIdPerform an unary online prediction request to a gRPC model server for custom containers.
server_streaming_predictexecprojectsId, locationsId, endpointsIdPerform a server-side streaming online prediction request for Vertex LLM streaming.
predict_long_runningexecendpointsId
explainexecprojectsId, locationsId, endpointsIdPerform an online explanation. If deployed_model_id is specified, the corresponding DeployModel must have explanation_spec populated. If deployed_model_id is not specified, all DeployedModels must have explanation_spec populated.
generate_contentexecendpointsIdGenerate content with multimodal inputs.
stream_generate_contentexecendpointsIdGenerate content with multimodal inputs with streaming support.
count_tokensexecendpointsIdPerform a token counting.
compute_tokensexecendpointsIdReturn a list of tokens based on the input text.
fetch_predict_operationexecendpointsIdFetch an asynchronous online prediction operation.

Parameters

Parameters can be passed in the WHERE clause of a query. Check the Methods section to see which parameters are required or optional for each operation.

NameDatatypeDescription
endpointsIdstring
locationsIdstring
projectsIdstring
endpointIdstring
filterstring
gdcZonestring
orderBystring
pageSizeinteger (int32)
pageTokenstring
readMaskstring (google-fieldmask)
updateMaskstring (google-fieldmask)

SELECT examples

Gets an Endpoint.

SELECT
name,
clientConnectionConfig,
createTime,
dedicatedEndpointDns,
dedicatedEndpointEnabled,
deployedModels,
description,
displayName,
enablePrivateServiceConnect,
encryptionSpec,
etag,
gdcConfig,
genAiAdvancedFeaturesConfig,
labels,
modelDeploymentMonitoringJob,
network,
predictRequestResponseLoggingConfig,
privateServiceConnectConfig,
satisfiesPzi,
satisfiesPzs,
trafficSplit,
updateTime
FROM google.aiplatform.endpoints
WHERE projectsId = '{{ projectsId }}' -- required
AND locationsId = '{{ locationsId }}' -- required
AND endpointsId = '{{ endpointsId }}' -- required;

INSERT examples

Creates an Endpoint.

INSERT INTO google.aiplatform.endpoints (
data__displayName,
data__description,
data__trafficSplit,
data__etag,
data__labels,
data__encryptionSpec,
data__network,
data__enablePrivateServiceConnect,
data__privateServiceConnectConfig,
data__predictRequestResponseLoggingConfig,
data__dedicatedEndpointEnabled,
data__gdcConfig,
data__clientConnectionConfig,
data__genAiAdvancedFeaturesConfig,
projectsId,
locationsId,
endpointId
)
SELECT
'{{ displayName }}',
'{{ description }}',
'{{ trafficSplit }}',
'{{ etag }}',
'{{ labels }}',
'{{ encryptionSpec }}',
'{{ network }}',
{{ enablePrivateServiceConnect }},
'{{ privateServiceConnectConfig }}',
'{{ predictRequestResponseLoggingConfig }}',
{{ dedicatedEndpointEnabled }},
'{{ gdcConfig }}',
'{{ clientConnectionConfig }}',
'{{ genAiAdvancedFeaturesConfig }}',
'{{ projectsId }}',
'{{ locationsId }}',
'{{ endpointId }}'
RETURNING
name,
done,
error,
metadata,
response
;

UPDATE examples

Updates an Endpoint.

UPDATE google.aiplatform.endpoints
SET
data__displayName = '{{ displayName }}',
data__description = '{{ description }}',
data__trafficSplit = '{{ trafficSplit }}',
data__etag = '{{ etag }}',
data__labels = '{{ labels }}',
data__encryptionSpec = '{{ encryptionSpec }}',
data__network = '{{ network }}',
data__enablePrivateServiceConnect = {{ enablePrivateServiceConnect }},
data__privateServiceConnectConfig = '{{ privateServiceConnectConfig }}',
data__predictRequestResponseLoggingConfig = '{{ predictRequestResponseLoggingConfig }}',
data__dedicatedEndpointEnabled = {{ dedicatedEndpointEnabled }},
data__gdcConfig = '{{ gdcConfig }}',
data__clientConnectionConfig = '{{ clientConnectionConfig }}',
data__genAiAdvancedFeaturesConfig = '{{ genAiAdvancedFeaturesConfig }}'
WHERE
projectsId = '{{ projectsId }}' --required
AND locationsId = '{{ locationsId }}' --required
AND endpointsId = '{{ endpointsId }}' --required
AND updateMask = '{{ updateMask}}'
RETURNING
name,
clientConnectionConfig,
createTime,
dedicatedEndpointDns,
dedicatedEndpointEnabled,
deployedModels,
description,
displayName,
enablePrivateServiceConnect,
encryptionSpec,
etag,
gdcConfig,
genAiAdvancedFeaturesConfig,
labels,
modelDeploymentMonitoringJob,
network,
predictRequestResponseLoggingConfig,
privateServiceConnectConfig,
satisfiesPzi,
satisfiesPzs,
trafficSplit,
updateTime;

DELETE examples

Deletes an Endpoint.

DELETE FROM google.aiplatform.endpoints
WHERE projectsId = '{{ projectsId }}' --required
AND locationsId = '{{ locationsId }}' --required
AND endpointsId = '{{ endpointsId }}' --required;

Lifecycle Methods

Deploys a Model into this Endpoint, creating a DeployedModel within it.

EXEC google.aiplatform.endpoints.deploy_model 
@projectsId='{{ projectsId }}' --required,
@locationsId='{{ locationsId }}' --required,
@endpointsId='{{ endpointsId }}' --required
@@json=
'{
"deployedModel": "{{ deployedModel }}",
"trafficSplit": "{{ trafficSplit }}"
}';