Skip to main content

evaluations

Creates, updates, deletes, gets or lists an evaluations resource.

Overview

Nameevaluations
TypeResource
Idgoogle.aiplatform.evaluations

Fields

The following fields are returned by SELECT queries:

Successful response

NameDatatypeDescription
namestringOutput only. The resource name of the ModelEvaluation.
annotationSchemaUristringPoints to a YAML file stored on Google Cloud Storage describing EvaluatedDataItemView.predictions, EvaluatedDataItemView.ground_truths, EvaluatedAnnotation.predictions, and EvaluatedAnnotation.ground_truths. The schema is defined as an OpenAPI 3.0.2 Schema Object. This field is not populated if there are neither EvaluatedDataItemViews nor EvaluatedAnnotations under this ModelEvaluation.
createTimestring (google-datetime)Output only. Timestamp when this ModelEvaluation was created.
dataItemSchemaUristringPoints to a YAML file stored on Google Cloud Storage describing EvaluatedDataItemView.data_item_payload and EvaluatedAnnotation.data_item_payload. The schema is defined as an OpenAPI 3.0.2 Schema Object. This field is not populated if there are neither EvaluatedDataItemViews nor EvaluatedAnnotations under this ModelEvaluation.
displayNamestringThe display name of the ModelEvaluation.
explanationSpecsarrayDescribes the values of ExplanationSpec that are used for explaining the predicted values on the evaluated data.
metadataanyThe metadata of the ModelEvaluation. For the ModelEvaluation uploaded from Managed Pipeline, metadata contains a structured value with keys of "pipeline_job_id", "evaluation_dataset_type", "evaluation_dataset_path", "row_based_metrics_path".
metricsanyEvaluation metrics of the Model. The schema of the metrics is stored in metrics_schema_uri
metricsSchemaUristringPoints to a YAML file stored on Google Cloud Storage describing the metrics of this ModelEvaluation. The schema is defined as an OpenAPI 3.0.2 Schema Object.
modelExplanationobjectAggregated explanation metrics for the Model's prediction output over the data this ModelEvaluation uses. This field is populated only if the Model is evaluated with explanations, and only for AutoML tabular Models. (id: GoogleCloudAiplatformV1ModelExplanation)
sliceDimensionsarrayAll possible dimensions of ModelEvaluationSlices. The dimensions can be used as the filter of the ModelService.ListModelEvaluationSlices request, in the form of slice.dimension = .

Methods

The following methods are available for this resource:

NameAccessible byRequired ParamsOptional ParamsDescription
getselectprojectsId, locationsId, modelsId, evaluationsIdGets a ModelEvaluation.
listselectprojectsId, locationsId, modelsIdfilter, pageSize, pageToken, readMaskLists ModelEvaluations in a Model.
importexecprojectsId, locationsId, modelsIdImports an externally generated ModelEvaluation.

Parameters

Parameters can be passed in the WHERE clause of a query. Check the Methods section to see which parameters are required or optional for each operation.

NameDatatypeDescription
evaluationsIdstring
locationsIdstring
modelsIdstring
projectsIdstring
filterstring
pageSizeinteger (int32)
pageTokenstring
readMaskstring (google-fieldmask)

SELECT examples

Gets a ModelEvaluation.

SELECT
name,
annotationSchemaUri,
createTime,
dataItemSchemaUri,
displayName,
explanationSpecs,
metadata,
metrics,
metricsSchemaUri,
modelExplanation,
sliceDimensions
FROM google.aiplatform.evaluations
WHERE projectsId = '{{ projectsId }}' -- required
AND locationsId = '{{ locationsId }}' -- required
AND modelsId = '{{ modelsId }}' -- required
AND evaluationsId = '{{ evaluationsId }}' -- required;

Lifecycle Methods

Imports an externally generated ModelEvaluation.

EXEC google.aiplatform.evaluations.import 
@projectsId='{{ projectsId }}' --required,
@locationsId='{{ locationsId }}' --required,
@modelsId='{{ modelsId }}' --required
@@json=
'{
"modelEvaluation": "{{ modelEvaluation }}"
}';