locations
Creates, updates, deletes, gets or lists a locations resource.
Overview
| Name | locations |
| Type | Resource |
| Id | google.aiplatform.locations |
Fields
The following fields are returned by SELECT queries:
- get
- list
| Name | Datatype | Description |
|---|---|---|
name | string | Resource name for the location, which may vary between implementations. For example: "projects/example-project/locations/us-east1" |
displayName | string | The friendly name for this location, typically a nearby city name. For example, "Tokyo". |
labels | object | Cross-service attributes for the location. For example {"cloud.googleapis.com/region": "us-east1"} |
locationId | string | The canonical id for this location. For example: "us-east1". |
metadata | object | Service-specific metadata. For example the available capacity at the given location. |
| Name | Datatype | Description |
|---|---|---|
name | string | Resource name for the location, which may vary between implementations. For example: "projects/example-project/locations/us-east1" |
displayName | string | The friendly name for this location, typically a nearby city name. For example, "Tokyo". |
labels | object | Cross-service attributes for the location. For example {"cloud.googleapis.com/region": "us-east1"} |
locationId | string | The canonical id for this location. For example: "us-east1". |
metadata | object | Service-specific metadata. For example the available capacity at the given location. |
Methods
The following methods are available for this resource:
| Name | Accessible by | Required Params | Optional Params | Description |
|---|---|---|---|---|
get | select | projectsId, locationsId | Gets information about a location. | |
list | select | projectsId | filter, extraLocationTypes, pageToken, pageSize | Lists information about the supported locations for this service. |
evaluate_dataset | exec | projectsId, locationsId | Evaluates a dataset based on a set of given metrics. | |
deploy | exec | projectsId, locationsId | Deploys a model to a new endpoint. | |
generate_instance_rubrics | exec | projectsId, locationsId | Generates rubrics for a given prompt. A rubric represents a single testable criterion for evaluation. One input prompt could have multiple rubrics This RPC allows users to get suggested rubrics based on provided prompt, which can then be reviewed and used for subsequent evaluations. | |
augment_prompt | exec | projectsId, locationsId | Given an input prompt, it returns augmented prompt from vertex rag store to guide LLM towards generating grounded responses. | |
corroborate_content | exec | projectsId, locationsId | Given an input text, it returns a score that evaluates the factuality of the text. It also extracts and returns claims from the text and provides supporting facts. | |
evaluate_instances | exec | projectsId, locationsId | Evaluates instances based on a given metric. | |
generate_synthetic_data | exec | projectsId, locationsId | Generates synthetic data based on the provided configuration. |
Parameters
Parameters can be passed in the WHERE clause of a query. Check the Methods section to see which parameters are required or optional for each operation.
| Name | Datatype | Description |
|---|---|---|
locationsId | string | |
projectsId | string | |
extraLocationTypes | string | |
filter | string | |
pageSize | integer (int32) | |
pageToken | string |
SELECT examples
- get
- list
Gets information about a location.
SELECT
name,
displayName,
labels,
locationId,
metadata
FROM google.aiplatform.locations
WHERE projectsId = '{{ projectsId }}' -- required
AND locationsId = '{{ locationsId }}' -- required
;
Lists information about the supported locations for this service.
SELECT
name,
displayName,
labels,
locationId,
metadata
FROM google.aiplatform.locations
WHERE projectsId = '{{ projectsId }}' -- required
AND filter = '{{ filter }}'
AND extraLocationTypes = '{{ extraLocationTypes }}'
AND pageToken = '{{ pageToken }}'
AND pageSize = '{{ pageSize }}'
;
Lifecycle Methods
- evaluate_dataset
- deploy
- generate_instance_rubrics
- augment_prompt
- corroborate_content
- evaluate_instances
- generate_synthetic_data
Evaluates a dataset based on a set of given metrics.
EXEC google.aiplatform.locations.evaluate_dataset
@projectsId='{{ projectsId }}' --required,
@locationsId='{{ locationsId }}' --required
@@json=
'{
"dataset": "{{ dataset }}",
"outputConfig": "{{ outputConfig }}",
"autoraterConfig": "{{ autoraterConfig }}",
"metrics": "{{ metrics }}"
}'
;
Deploys a model to a new endpoint.
EXEC google.aiplatform.locations.deploy
@projectsId='{{ projectsId }}' --required,
@locationsId='{{ locationsId }}' --required
@@json=
'{
"huggingFaceModelId": "{{ huggingFaceModelId }}",
"modelConfig": "{{ modelConfig }}",
"publisherModelName": "{{ publisherModelName }}",
"deployConfig": "{{ deployConfig }}",
"endpointConfig": "{{ endpointConfig }}"
}'
;
Generates rubrics for a given prompt. A rubric represents a single testable criterion for evaluation. One input prompt could have multiple rubrics This RPC allows users to get suggested rubrics based on provided prompt, which can then be reviewed and used for subsequent evaluations.
EXEC google.aiplatform.locations.generate_instance_rubrics
@projectsId='{{ projectsId }}' --required,
@locationsId='{{ locationsId }}' --required
@@json=
'{
"rubricGenerationSpec": "{{ rubricGenerationSpec }}",
"agentConfig": "{{ agentConfig }}",
"predefinedRubricGenerationSpec": "{{ predefinedRubricGenerationSpec }}",
"contents": "{{ contents }}"
}'
;
Given an input prompt, it returns augmented prompt from vertex rag store to guide LLM towards generating grounded responses.
EXEC google.aiplatform.locations.augment_prompt
@projectsId='{{ projectsId }}' --required,
@locationsId='{{ locationsId }}' --required
@@json=
'{
"model": "{{ model }}",
"contents": "{{ contents }}",
"vertexRagStore": "{{ vertexRagStore }}"
}'
;
Given an input text, it returns a score that evaluates the factuality of the text. It also extracts and returns claims from the text and provides supporting facts.
EXEC google.aiplatform.locations.corroborate_content
@projectsId='{{ projectsId }}' --required,
@locationsId='{{ locationsId }}' --required
@@json=
'{
"content": "{{ content }}",
"facts": "{{ facts }}",
"parameters": "{{ parameters }}"
}'
;
Evaluates instances based on a given metric.
EXEC google.aiplatform.locations.evaluate_instances
@projectsId='{{ projectsId }}' --required,
@locationsId='{{ locationsId }}' --required
@@json=
'{
"trajectoryExactMatchInput": "{{ trajectoryExactMatchInput }}",
"toolNameMatchInput": "{{ toolNameMatchInput }}",
"bleuInput": "{{ bleuInput }}",
"pairwiseSummarizationQualityInput": "{{ pairwiseSummarizationQualityInput }}",
"trajectoryAnyOrderMatchInput": "{{ trajectoryAnyOrderMatchInput }}",
"toolParameterKeyMatchInput": "{{ toolParameterKeyMatchInput }}",
"cometInput": "{{ cometInput }}",
"metrics": "{{ metrics }}",
"questionAnsweringRelevanceInput": "{{ questionAnsweringRelevanceInput }}",
"toolParameterKvMatchInput": "{{ toolParameterKvMatchInput }}",
"groundednessInput": "{{ groundednessInput }}",
"pointwiseMetricInput": "{{ pointwiseMetricInput }}",
"questionAnsweringQualityInput": "{{ questionAnsweringQualityInput }}",
"pairwiseMetricInput": "{{ pairwiseMetricInput }}",
"coherenceInput": "{{ coherenceInput }}",
"fluencyInput": "{{ fluencyInput }}",
"rougeInput": "{{ rougeInput }}",
"questionAnsweringCorrectnessInput": "{{ questionAnsweringCorrectnessInput }}",
"autoraterConfig": "{{ autoraterConfig }}",
"summarizationHelpfulnessInput": "{{ summarizationHelpfulnessInput }}",
"trajectoryPrecisionInput": "{{ trajectoryPrecisionInput }}",
"instance": "{{ instance }}",
"questionAnsweringHelpfulnessInput": "{{ questionAnsweringHelpfulnessInput }}",
"toolCallValidInput": "{{ toolCallValidInput }}",
"summarizationVerbosityInput": "{{ summarizationVerbosityInput }}",
"trajectorySingleToolUseInput": "{{ trajectorySingleToolUseInput }}",
"safetyInput": "{{ safetyInput }}",
"summarizationQualityInput": "{{ summarizationQualityInput }}",
"trajectoryInOrderMatchInput": "{{ trajectoryInOrderMatchInput }}",
"trajectoryRecallInput": "{{ trajectoryRecallInput }}",
"metricxInput": "{{ metricxInput }}",
"rubricBasedInstructionFollowingInput": "{{ rubricBasedInstructionFollowingInput }}",
"fulfillmentInput": "{{ fulfillmentInput }}",
"pairwiseQuestionAnsweringQualityInput": "{{ pairwiseQuestionAnsweringQualityInput }}",
"exactMatchInput": "{{ exactMatchInput }}"
}'
;
Generates synthetic data based on the provided configuration.
EXEC google.aiplatform.locations.generate_synthetic_data
@projectsId='{{ projectsId }}' --required,
@locationsId='{{ locationsId }}' --required
@@json=
'{
"outputFieldSpecs": "{{ outputFieldSpecs }}",
"examples": "{{ examples }}",
"count": {{ count }},
"taskDescription": "{{ taskDescription }}"
}'
;